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Abstract
The simplicity and the efficiency of a quasi-analytical method for solving
nonlinear ordinary differential equations (ODE) is illustrated on the study of
anharmonic oscillators (AO) with a potential V (x) = βx2 + x2m (m > 0). The
method (Bervillier 2008 Nucl. Phys. B801 296) applies a priori to any ODE
with two-point boundaries (one being located at infinity), the solution of which
has (fixed) singularities in the complex plane of the independent variable x. A
conformal mapping of a suitably chosen angular sector of the complex plane
of x upon the unit disc centered at the origin makes convergent the transformed
Taylor series of the generic solution so that the boundary condition at infinity
can be easily imposed. In principle, this constraint, when applied on the
logarithmic derivative of the wavefunction, determines the eigenvalues to an
arbitrary level of accuracy. In practice, for β � 0 or slightly negative, the
accuracy of the results obtained is astonishingly large with regard to the modest
computing power used. Various aspects of the method and comparisons with
some seemingly similar methods, based also on expressing the solution as a
Taylor series, are shortly reviewed, presented and discussed.

PACS numbers: 02.60.−x, 02.60.Lj, 02.30.Hq, 02.30.Mv

1. Introduction

The accurate determination of the spectrum of the anharmonic oscillator (AO) is an old problem
which has attracted much interest (for recent reviews, see [1]). This is certainly due to the
asymptotic character of its perturbative expansion [2], but also because it is intrinsically hard
to solve accurately for sizeable values of the coupling parameter. The eigenvalues may be
numerically determined using shooting or relaxation methods, and extremely accurate results
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may be obtained that way (e.g. see [3]). It is also interesting to develop simple and efficient
(quasi-) analytical methods which may be implemented using symbolic calculation softwares
and modest computation powers1.

Sophisticated methods have recently been proposed [4, 5]. They are all based on a Taylor
series in the independent variable x of the solution of the ordinary differential equation (ODE).
Methods of this kind have previously been developed in different contexts [6, 7].

The object of the present paper is to illustrate, by the computation of the spectrum of the
AO, the simplicity, the efficiency and the limitations of one of these methods: the mapping
method [5].

The paper is organized as follows. In section 2, the AO is introduced together with a
change of function (a logarithmic derivative) which transforms the originally linear ODE into
a nonlinear ODE. In doing so, the essential singularity at infinity of the wavefunctions is
softened but the new functions are no longer analytic in the complex x-plane. The common
characteristics of the Taylor-series-based methods are then presented. Section 3 presents a
short review of these methods utilized in the past to solve the AO. In section 4 the principle of
the mapping method is briefly reminded. Though several configurations of the AO have been
explicitly treated, only one is presented here in detail. We also explain how highly accurate
estimates of the eigenvalues are obtained for a potential given by (2) with λ = 1, β = 1 and
m = 2. Other cases are discussed elsewhere [8]. A conclusion is presented in section 5. Some
numerical results are displayed in the appendix.

2. The ODE of the anharmonic oscillator

2.1. The linear ODE

The usual eigenvalue problem associated with the AO is to find the spectrum En which
corresponds to the solutions ψn(x) of the following linear ODE:

ψ ′′(x) + (E − V (x))ψ(x) = 0, (1)

with the condition that the ψn(x) vanish at infinity so as to be squared integrable. In (1) a
prime denotes a derivative with respect to x and the potential V (x) is

V (x) = βx2 + λx2m, (2)

with m = 2, 3, . . ., β a given real number and λ can be set equal to unity due to Symansik’s
scaling:

Em
n (β, λ) = λ1/(m+1)Em

n (βλ−2/(m+1), 1).

With the potential (2), the general solution of (1) is analytic on the whole complex x-plane
with an irregular singular point located at infinity (see, e.g. [9, p 195]).

The two boundary conditions on the corresponding wavefunctions ψn(x) are as follows:

(1a) either ψn(0) = 0 or ψ ′
n(0) = 0 (odd or even eigenfunctions) and

(1b) ψn(x) → 0 as x → ∞.

For given β and m, the general solution involves three constants: two integration
constants—fixed by the parity condition (1a) and by a free normalization—and the yet unknown

1 The calculations are performed, with the help of Mathematica 5.0.1.0. running on a laptop with a processor Intel
Pentium M 2.00 GHz, 1.00 Go RAM.
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‘energy’ parameter E. The spectrum of (1) is then determined by imposing the condition (1b).
Actually, without this condition and for large x, the general solution of (1), satisfying the
condition (1a), has the following asymptotic form:

ψ(x)
x→+∞� e− xm+1

m+1 + Be+ xm+1

m+1 , (3)

where B is some constant depending on E.
Determining the spectrum of (1) amounts to finding the discrete set of values En

(n = 0, 1, . . . ,∞) for which B vanishes.

2.2. The nonlinear ODE

In order to remove the essential singularity at infinity displayed in (3), it is worth considering
the following change of function:

ψ(x) = xεeW(x), (4)

in which ε = 0 or ε = 1 according to the parity of the solution of (1) looked for. Then, (1)
becomes equivalent to

E − V (x) + W ′2 + W ′′ +
2ε

x
W ′ = 0, (5)

with the boundary conditions

W(0) = 0, W ′(0) = −ε, W(x)
x→+∞� − xm+1

m + 1
. (6)

If instead of W(x), one considers the derivative

h(x) = W ′(x), (7)

then (5) takes the form of a Riccati ODE. More important is the fact that

h(x) = ψ ′(x)/ψ(x) − ε/x, (8)

so that any zero of ψ(x) in the complex x-plane becomes a pole for h(x). Hence, the nodes
of the excited states ψn (n � 2) of the AO become poles for h(x) located on the positive real
x-axis.

Note that, for a given n, a solution Wn(x) of interest is no longer a ‘vanishing separatrix’
between two blowing behaviors when x → ∞ (see equation (3) for opposite values of B). For
large values of x, Wn(x) may not distinguish itself clearly from a ‘wrong’ solution. Fortunately,
equation (5) provides a solution which involves a movable singularity of the form

WSing(x) = ln |x0 − x|,
where x0 is a constant which depends on E (the initial conditions being fixed). Determining
the ‘physical’ eigenfunctions amounts to pushing this movable singularity up to infinity.

2.3. Generalities on the Taylor-series-based methods

The methods for solving ODEs based on expressing the solution as a Taylor series rely upon
the following considerations.

3
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It is convenient to first perform the change of variable x → z = x2 and to redefine the
wavefunction as

ψ(x) = xεf (x2), (9)

in which ε = 0 or ε = 1 according to the parity of the solution of (1) looked for. Then (1)
becomes equivalent to

4 z f ′′(z) + 2(1 + 2 ε) f ′(z) + (E − Ṽ (z))f (z) = 0, (10)

with

Ṽ (z) = βz + zm,

and the boundary conditions

f (0) = 1, (11)

f (∞) = 0. (12)

Express f (z) as a truncated Taylor series about the origin z = 0:

fM(z) =
M∑
i=0

ai z
i, (13)

in which a0 = 1 in agreement with (11).
For f∞(z) to be a solution of (10), the coefficients ai must satisfy the following recurrence

relation:

2(k + 1)[2 k + 1 + 2 ε]ak+1 + Eak − βak−1 − ak−m = 0, (14)

with the writing convention that ai = 0 if i < 0.

Using the recurrence relation (14), one determines iteratively the coefficients ai(E) so
that f∞(z) is a solution of (10) for arbitrary E. The coefficients ai(E) so determined are
polynomials in E.

Similar considerations hold for the nonlinear ODE (5) and the expansion

W(x) = g(x2), (15)

gM(z) =
M∑
i=0

ci zi, (16)

in which c0 = 0 in agreement with (6). The corresponding recurrence relation is

2k(2k − 1 + 2ε)ck + 4
k−2∑
i=0

(i + 1)(k − i − 1)ci+1ck−i−1 = β δk,2 − E δk,1 + δk,m+1, (17)

in which δi,j is the Kronecker delta symbol. From this relation one can determine iteratively
the coefficients ck as polynomial functions of E.

The expansion of the function h(x) corresponding to the logarithmic derivative-like
transform (8) is obtained from (16) and (17) using

hM(x) = 2xg′
M(z),

with z = x2.
To determine the set of values En which potentially correspond to the wavefunctions

ψn(x) (satisfying the boundary condition (1b)), one has to find one auxiliary condition on the

4



J. Phys. A: Math. Theor. 42 (2009) 485202 C Bervillier

coefficients ai(E) or ci(E). The various methods described in sections 3 and 4 differ by the
choice of the auxiliary condition.

3. The Taylor-series-based methods used to solve the AO

3.1. The power-series method [10]

Because the Taylor series f∞(z) has an infinite radius of convergence, one may estimate the
set Ẽn for which f∞(z0) vanishes at a given finite z0 by simply imposing that the sum of the
series (13) vanishes at this point. This zero located on the positive part of the real axis of z

exists because there are solutions of (10) having asymptotic forms (3) with opposite values of
B �= 0. Then, the limit z0 → ∞ should correspond to B → 0, and Ẽn should approach the
spectrum En of the AO (as actually observed in several studies of ‘bounded’ oscillators [11]).

For finite values of M, fM(z) represents approximately f∞(z) only in a finite range of
values of z whereas for larger values the sum goes to ±∞ according to the sign of the last
term. The procedure for determining the spectrum of the AO may then be sketched as follows.

(2a) One fixes M, chooses a sensible value of z0 and determines the zeros of the polynomial
in E associated with the solution of the equation

fM(z0) = 0 (18)

(this is the effective auxiliary condition at z0).
(2b) On increasing z0 one observes a convergence of the zeros toward definite values up to a

value z
(M)
0 where the convergence terminates. At this point, one gets the best values of

the spectrum En

(
z
(M)
0

)
for the given M.

(2c) One increases M and repeats the process from step (2a).
(2d) One observes that z

(M)
0 is an increasing function of M and that En

(
z
(M)
0

)
quickly

approaches the spectrum En as M increases.

This method has been applied in 1961 by Secrest et al [10] with M ∼ 1000. They notably
have determined the ground-state energy E0 with 12 significant figures in the case m = 2,
β = 0. A new calculation during the present work, for m = 2, β = 1 and M = 250, gives the
ground-state energy E0 with 41 significant figures.

As illustrated by figure 1, the determination of all the real zeros of the condition (18)
provides an estimation of the complete spectrum, the number of states being only limited by
the order of the polynomial in E corresponding to the value of M chosen. The excited states
may be hierarchically determined provided z0 is chosen larger than the location of the last
node. As a consequence the number of significant figures obtained slowly decreases as the
quantum number n increases (for a given M).

It may occur (for some values of the potential parameters β and m) that too large values
of z0 or M be required to get a satisfactory accuracy (see the caption of figure 1). In that case
Secrest et al [10] have suggested to reach the value z0 in more than one step using the Taylor
expansion about a non-zero value zl < z0. This suggestion is already the analytic-continuation
method introduced later on by Holubec and Stauffer [12].

3.2. The analytic-continuation method [12]

Let us consider the Taylor expansion of f (z) about an arbitrary point zl �= 0:

fM,l(z) =
M∑
i=0

bi (z − zl)
i . (19)
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Figure 1. Part of the even spectrum obtained using the power-series method for β = 1, m = 2 and
with M = 100 terms in the series. The open circles correspond to the real zeros of the polynomial
condition (18) for varying z0. The horizontal lines indicate the ‘true’ values of the spectrum (E0,
E2, E4, . . .) as displayed in the appendix. For sufficiently high values of z0, the points reach a first
plateau and then deviate from the horizontal lines because the truncated series fM(z) no longer
represents approximately the function f∞(z). For the displayed values of n, the succession of the
large and stable (relatively to changing M) plateaux allows a clear determination of En. However,
those plateaux may disappear when n increases (because the value of z0 at which they would
take place may exceed the range where the truncated series represent the function), in such cases,
larger values of M should be required to get correct approximations of high eigenvalues En. For
different values of β and m, this difficulty may occur for much smaller values of M and n so that
the power-series method may completely fail.

For f∞,l(z) to be a solution of (10), the coefficients bi must satisfy the following recurrence
relation:

4 zl (k + 2)(k + 1)bk+2 = 2(k + 1)[2k + 1 + 2 ε]bk+1,

+
(
E − βzl − zm

l

)
bk − (

β + mzm−1
l

)
bk−1,

−
m−2∑
i=0

m!

i!(m − i)!
zi
l bk−m+i , (20)

which determines them in terms of E and of the two coefficients b0 and b1. Those two quantities
may be calculated using the series (13) so as to account for the conditions (1a) at the origin
with

b0 = f∞(zl), b1 = f ′
∞(zl). (21)

Choosing zl = z − zl = h to be small, one estimates fM(h) and f ′
M(h) and then fM(2h)

as a function of the unique unknown parameter E. One estimates again b0 and b1 at this point
in order to reach the point 3h and so on until the point z0 = N h.

The following of the procedure is identical to the preceding one (steps (2a)–(2d) above).
Despite a relative heaviness, the method is very efficient provided a well-balanced choice of
M, N and h is done. For example, with M = N = 40, 22 significant figures have been obtained
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this way [13], in the case of the ground-state energy of the double-well potential β = −50 and
m = 2 for which it is almost degenerated with the first excited state (the splitting occurs at the
21st figure only). In the circumstances, it is more efficient than the mapping method (see [8]).

Note that, contrary to the power-series method, the analytic-continuation method could
apply even in configurations where the range of analyticity of ψ about the origin is limited.

3.3. The Hill determinant method [14]

One of the most popular methods used to solve the eigenvalue problem of the AO is the
so-called Hill determinant method [14] which is (partly) based on a Taylor expansion of the
solution in powers of the independent variable x such as (9, 13).

Actually it is traditionally considered as a variational method because an exponential
prefactor is usually introduced in the relation (9) between ψ and the power series (13). In
[14], Biswas et al use a fixed exponential factor e−x2/2 but subsequent studies considered e−γ x2

with γ adjustable [15–17] and even e−γ x2+ρx4
with γ and ρ adjustable [18]. Nevertheless, this

method may well be sketchily introduced without considering any prefactor.
Let us consider the recurrence relation (14) as an infinite system of linear algebraic

equations for the coefficients ai. For this homogeneous linear system, to have a solution, its
(infinite) determinant (namely, the Hill determinant; see, e.g. [9]), if it converges, must vanish.
This condition is a transcendental equation for E the infinite number of solutions of which
should coincide with the complete spectrum of the AO (provided the condition at infinity is
satisfied).

Practically, one deals with finite values of M and the effective auxiliary condition reduces
to

DM(E) = 0, (22)

where DM(E) is the Hill determinant truncated at order M.
In fact, the auxiliary condition (22) is not always sufficient to determine the solution

looked for. This is due to the analyticity of the general solution of (1): the blowing parts of the
solution also correspond to convergent series and may be selected by the iterative procedure
so defined. In practice, one should verify that the wavefunction selected by the Hill criterion
(22) actually vanishes at infinity.

Using an exponentially decreasing prefactor, one may improve the method. It is a matter
of fact that this ‘genuine’ Hill determinant method works in certain circumstances (see for
example [17]). But it fails in certain other circumstances. In particular, it is unable [19] to
furnish the full spectrum of the quasi-exact configurations [18, 20], see [21] for a review of
the reasons of failure.

3.4. A simplistic method

It is interesting to realize that

aM+1(E) = (−1)M+1 DM(E)

dM+1,0
a0,

where dM+1,0 is the (M+1, 0) minor of the matrix of the system of linear equations (14). Hence,
the condition (22) is equivalent to the condition that the next coefficient aM+1(E) vanishes
(e.g. see [18, 22]). This is the condition imposed in certain studies of nonlinear ODEs (e.g.
see [23, 25]), thus assuming implicitly that the Taylor series of the solution looked for has an
infinite radius of convergence. Unfortunately, in general, this is not true [24, 26], due to the
presence of (fixed) singularities in the complex x -plane [27] in the case of a nonlinear ODE.

7
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The solutions of the nonlinear ODE (5) have such singularities: e.g. for β = 1 and m = 2,
one deduces from the exact study [28] that they are all located on the imaginary axis of the
complex x-plane. Consequently, the auxiliary condition

cM(E) = 0 (23)

is not sufficient to impose the required condition at infinity because the series has a finite
radius of convergence. However, condition (23) may, sometimes, give approximate estimates
of the true spectrum. In particular, if a large accuracy on E0 is required to push the movable
singularity beyond the (limited) range of convergence of the series, then (23) will give a good
estimate of E0. In contrast, the procedure simply may not work at all. This phenomenon
explains why the simplistic method ‘works’ in some case and does not in another case despite
similar radius of convergence for the respective Taylor series [29].

The simplistic method is extremely easy to implement and, when it works, may serve to
get a primary estimate of the solution looked for before using more sophisticated methods.

3.5. The Padé method [6]

The Padé method (originally proposed in [6]) relies upon an attempt to represent the solution
of (5) looked for by successive rational functions of the form

PN1,N2(z) =
∑N1

i=0 piz
i∑N2

i=0 qizi
,

which involves N1 + N2 + 1 coefficients and z = x2. The procedure of the method may be
described as follows.

The coefficients pi and qi may be determined from the Taylor series (16) at order
M = N1 + N2 according to the usual rules of construction of a Padé approximant. This
determines the coefficients pi and qi as functions of the unknown parameter E. The auxiliary
condition is obtained by imposing that the Padé approximant constructed at order M still
reproduces the truncated function at next order M + 1. Setting N1 = s + ω and N2 = s, one
gets the following linear system of equations for the coefficients pi and qi (using the convention
that ck = 0 for k < 0):

pi =
s∑

j=0

ci−j qj for i = 1, . . . , s + ω,

0 =
s∑

j=0

ci−j qj for i = s + ω + 1, . . . , 2s + ω + 1.

The second line is a homogeneous system of s + 1 linear algebraic equations. To have a
solution, the determinant of the matrix

T̂i,j = cs+ω+1+i−j (i = 0, . . . , s; j = 0, . . . , s)

must vanish:

det(T̂ ) = 0. (24)

That is the auxiliary condition looked for to determine the spectrum provided that one
chooses ω in agreement with the boundary condition at infinity. In general, it is sufficient to
choose one of the three values ω = 1, 0,−1 according to whether the function to be determined
goes to ±∞, a constant or 0 when z → ∞. Eventually, considering two successive values of
ω gives upper and lower bounds on the eigenvalues [6, 30, 31].

8
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The Padé method is well adapted to reproduce the analytic structure of a meromorphic
function in particular if it has poles. If one writes the logarithmic derivative ψ ′(x)/ψ(x) under
the form of a ratio L/K , then L(x) and K(x) are analytic functions in the complex x-plane
(see [32] for an efficient use of this property). Since the transform (8) changes the zeros of
ψ(x) into poles for h(x), the Padé method is better adapted to sum the Taylor series of h(x)

rather than that of ψ(x) (however, see [33]). Moreover, it is also able to determine the energies
of the excited states despite the poles located on the positive real x-axis (the nodes of ψn(x)

for n � 2).
The Padé method (named the Riccati–Padé method in [34] and later on the Hankel–Padé

method in [35]) has been first introduced in [6] in conjunction with a logarithmic derivative
transform like (8) to calculate, notably, the even and odd ground-state energies of the AO with
β = 1 and m = 2 and for various values of λ. Typically the accuracy obtained was about eight
significant figures. In [30], the excited-state energies have been estimated for the pure quartic
and sextic AO (i.e. β = 0, m = 2 and 3), 11 significant figures were obtained on the estimate
of E0 for the quartic AO. The method has then been utilized several times (see, e.g. [31] for
a list of references). In [31], the first two eigenvalues of both the quartic AO and the double
well down to β = −15 are estimated with 18–20 significant figures. In addition, Amore and
Fernández [36] have shown that the Padé method may also be applied to solve the two-point
boundary value problem associated with several nonlinear ODEs.

The Padé method is easy to use. It has appeared robust in several occasions. However, its
effectiveness is limited because the (repeated) calculations of determinants of large matrices
are extremely time consuming. Sometimes, the Padé approximants introduce ‘spurious’ poles
or zeros that can perturb a clear determination of the spectrum En. Though it is not as refined
as the following methods, the Padé method is extremely useful.

3.6. The contour-integral method

3.6.1. The ground state. Leonard and Mansfield [7, 37] have proposed the recourse to a
contour integral in the complex x-plane to perform an analytic continuation of the Taylor series
of W(x) (satisfying (5)) toward the large x values so that the asymptotic behavior (6) can be
effectively imposed. The method may be described as follows.

Starting with the Taylor series (16), the coefficients of which satisfy the recurrence relation
(17), one rewrites this series in terms of large s = 1/x:

g̃M(s) =
M∑
i=0

ci

s2i
. (25)

According to (6), one is interested in finding the values of E for which this series, for
M → ∞, has a pole of order m + 1 at the origin s = 0:

g̃∞(s)
s→0� − 1

(m + 1) sm+1
. (26)

To this end, one considers the following integral over a large circle contour C around the
origin:

F∞(σ ) = 1

2iπσm+1

∫
C

eσs

s
g̃∞(s) ds.

According to the Cauchy formula, the contribution of the pole (26) to this function is
− 1

(m+1)!(m+1)
. Assuming that all the other singularities of g̃∞(s) are located to the left of

9
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the imaginary axis in the complex s-plane then their contributions to F∞(σ ) will be made
negligible as σ → ∞, so that

lim
σ→∞ F∞(σ ) = − 1

(m + 1)!(m + 1)
. (27)

The truncated series (25) is then used to estimate F∞(σ ), leading to

FM(σ) = 1

2iπσm+1

M∑
i=0

ci

∫
C

eσs

s
s−2i ds,

=
M∑
i=0

ci

�(2i + 1)
σ 2i−m−1. (28)

Owing to the Euler Gamma function in the denominator, this series converges (the original
series had a finite radius of convergence) and may be summed term by term to estimate F∞(σ )

when σ becomes large. Then a procedure similar to that described in points (2a)–(2d) in
section 3.1 may be applied with z0 replaced by σ0 at which point the condition (27) is
tentatively imposed.

If the region of analyticity of g̃∞(s) does not correspond to the assumption that all the
singularities are located to the left of the imaginary axis of s, the convergence may be spoiled
by steady oscillations. To circumvent such difficulties, Leonard and Mansfield [7, 37] propose
to modify (28) by introducing a parameter αI , so that

FM,αI
(σ ) =

M∑
i=0

ci

�(2iαI + 1)
σ 2i−m−1,

what corresponds to having performed some rotation of the complex s-plane (on the left-hand
side if αI < 1).

3.6.2. The excited states. Because the excited states ψn(x) for n � 2 have nodes on the
positive real part of the x-axis, the corresponding Wn(x) have (fixed) singularities on the
positive real part of the s-axis which cannot be moved by αI . Hence, the method does not
apply directly to the determination of the excited states. In order to have access to them,
Leonard and Mansfield [7] propose to use W0(x) (determined by the procedure described just
above) as a basis to write (here accounting for the odd (ε = 1) and even (ε = 0) possibilities)

ψ(x) = xεeWε(x)P (x). (29)

The ODE satisfied by P(x) is then

P ′′ +
2ε

x
P ′ + 2W ′

εP
′ + (E − Eε)P = 0.

This differential equation has two types of large x solution:

P(x)
x→∞� exp

[
− E − Eε

2(m − 1)xm−1

]
, (30)

P(x)
x→∞� exp

[
2

xm+1

(m + 1)

]
. (31)

Only (30) is compatible with the boundary condition at infinity for ψn(x). Taking into
account (6), the second behavior (31) reconstructs the blowing part proportional to B in (3).

With the behavior (30), Pn(1/s) has no singularity at s = 0 and the contour integral
procedure may again be applied to determine the values of En − Eε that make this integral
vanish when σ → ∞.

10
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Figure 2. Evolution with the order M of all the real zeros corresponding to the auxiliary condition
(34) for the AO with β = 1, m = 2. The mapping transform (32) is used with R = 5.192 695 and
α = 2 corresponding to the expected analytic structure of the ground state ψ0 [28] (see the text).
The candidate to the ground-state energy E0 is well evidenced.

3.6.3. Rescaling. In order to improve the efficiency of their method applied to the AO,
Leonard and Mansfield [7, 37] utilize a rescaling which allows them to assign to the third
coefficient c3 the role of the adjustment parameter instead of E whereas c2 is fixed instead of
β. With this trick and M = 300, they have been able to estimate E0 with an accuracy of 65
significant figures (for β = 0 and m = 2). The remaining of the spectrum of the AO up to
n � 40 is determined with an accuracy of 48 significant figures.

It is to be noted that the rescaling trick is not very convenient when β �= 0 since then a
supplementary adjustment of c2 is required [7].

As indicated below, the mapping method appears to be more efficient than the contour-
integral method, since, using the same rescaling trick, it yields a much greater accuracy with
M = 250 only for the configuration β = 0 and m = 2 (see [8]). Also, the contour integral
method has recourse to an iterative uncomfortable adjustment procedure for approaching the
infinite boundary (similar to that of the power-series method described in section 3.1).

4. The mapping method

4.1. Introduction

The mapping method introduced in [5] leans also on an analytic continuation after a
logarithmic-derivative-like transformation but in addition, the infinite boundary is brought
close to the origin using the following conformal transformation:

z → w = (1 + z/R)1/α − 1

(1 + z/R)1/α + 1
, (32)

in which R and α characterize the position of the vertex and the angle of an angular sector of
the complex plane of z as shown in figure 2 of [5].

11
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The conformal transformation (32) maps the interior of the angular sector of the z-plane
into the interior of the unit circle centered at the origin of the w-plane so that z = ∞
corresponds to w = 1 (whereas z = 0 corresponds to w = 0).

If the interior of the angular sector is a region of analyticity of the original function g(z)

then the transformed series

g̃M(w) =
M∑
i=0

ui(E)wi, (33)

converges in the unit disk |w|<1.

4.2. Example of the AO with β = 1 and m = 2

In this configuration, all the zeros of the ground state ψ0(x) are located on the imaginary
axis of the x-plane [28]. For g(z), they become (fixed) singularities located on the negative
part of the real z-axis. Performing simple partial sums of the series in powers of x of ψ0(x)

with E = 1.392 351 641 530 29 (close to the true value E0, see the appendix), it is easy to
estimate the location of the (fixed) singularity of g(z) the closest to the origin. This provides
the radius of convergence R0 � 5.192 695 for the series of g(z). In addition, the plane cut on
the negative real axis, starting from the point z = −5.192 695, forms an angular sector such
that R = R0 and α = α0 = 2. Choosing those values in the conformal mapping (32) and
accounting for the constraint (6) at infinity (and the definitions (15) and (16)), the auxiliary
condition looked for to estimate E0 can be expressed as

g̃
(2)
M (w)w=1 = 0, (34)

in which g̃(2)(w) stands for the conformal mapping applied on the function g′′(z) which goes
to zero as z → ∞.

The condition (34) is a polynomial equation for E, the solutions of which effectively
display a stable real value as M is increased. Figure 2 shows that, even when M is small, this
value is easily identified and can be followed without difficulty. Actually this stable value
converges quickly to the true value E0. For example, with M = 150, E0 is determined with an
accuracy of 83 significant figures (see the appendix). Only the choice of the order M limits the
accuracy of this estimation which is much more accurate than the previously published values
[14, 16, 38].

A convenient variant to the auxiliary condition (34) consists in simply imposing the
vanishing of the last term of the series (33):

uM(E) = 0. (35)

This simplified condition is justified because, for a generic E, g(z) has movable
singularities which limit the convergence of the series g̃M(w) except for the value E0 for
which they are sent to infinity. Hence, imposing the condition (35) amounts to force the
convergence of the series and this procedure enables the determination of the value of E0.

4.3. Practical use of the mapping method

In general one does not know the location of the (fixed) singularity closest to the origin of g(z).
One must thus consider R and α as free parameters. Several procedures may be conceived to
approximately determine the ‘best’ values of R and α.

Suppose first that R0 and α0 define an angular sector in which g(z) is analytic. If R < R0

and α < α0, the mapping method should provide a convergent result as the order M is
increased. If it does not, then a decrease of the trial value of R (also of α even) is necessary.

12
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Figure 3. Illustration, on the AO with β = 1, m = 2, of the respective importance of the free
parameters R and α, the correct values of which would be R0 � 5.192 695 and α = 2. Nc is an
approximate estimate of the number of stabilized figures (Nc = − log |1 − E

(0)
M /E

(0)
M−1| where

E
(0)
M−1 and E

(0)
M are two successive estimates of E0 on varying the order of the Taylor series). On

the left, α is fixed to 1 and R is varied. It is clear that the best convergence corresponds to R = 5.

For smaller values of R, the convergence seems to be monotonically increasing whereas for R = 7
(larger than the radius of convergence R0), a relatively important decrease of the slope shows a
greater deterioration of the convergence compared to the other curves. On the right, R is fixed to 5
and α is varied. The best convergence seems to correspond to α = 5/2 which is a too large value.
Actually, the small rule box shows that at larger values of the order M, this choice, most probably,
is no longer the best one.

One proceeds by successive trial and error to find one couple of value {R1, α1} such that the
mapping procedure begins to converge. In the example β = 1 and m = 2, if one sets R = 1,
α = 1 and M = 50 one obtains an estimate of E0 with eight significant figures (1.392 351 63).
One may then look at the effective radius of convergence of the original series with the help
of the d’Alembert or the Cauchy rule or the plot of the sum of the series as a function of z.
This could give a better estimate of R0 leading to a better convergence toward E0. However, a
large accuracy on R0 is not required to get a large accuracy on E0.

The determination of the best value of α proceeds also by trial and error and is determined
by the criterion of best convergence as shown by figure 3. For small values of M, it may
appear that ‘exotic’ effective best values of α may be observed. Figure 3 shows that the value
α = 5/2 provides, for small M, an apparent better convergence than the true value α = 2. But,
for larger values of M, one observes that the former case finally yields perturbed convergence
whereas with the second case, the convergence remains smooth (see figure 3).

4.4. Excited states

The determination of the excited states proceeds as in section 3.6. The ground state W0(x)

(or the first odd state W1(x)) is used as a basis through (29). Consequently, there is no need
to look for new determinations of R and α. The values obtained previously for W0,1(x) work
also for the excited states. At a given order M, the corresponding auxiliary condition yields a
polynomial equation for E, the real zeros of which form the approximate spectrum of the AO
(see figure 4). The values of the spectrum are given in the appendix, and they are much more
accurate than (and compatible with) the existing previous estimates [14, 16, 38].
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Figure 4. Evolution with M of the distribution of the real zeros (open circles) corresponding to
the auxiliary condition of the mapping method applied on the function P(x) defined by (29) in the
case β = 1 and m = 2 (even case). The horizontal lines correspond to the ‘exact’ values of the
spectrum given in the appendix.

4.5. Other examples treated

Configurations which are more difficult to treat than the previous one have been also
considered. For a detailed discussion, the interested reader may look at the previous version
of this paper [8]. Let me simply mention that the ground-state energy of the configuration
β = 0 and m = 2 has been determined with an accuracy of 114 significant figures in the even
case and of 120 significant figures in the odd case! A complication arises when β is more and
more negative (double-well configurations). The efficiency of the mapping method decreases
as β becomes more and more negative due to the decreasing of the radius of convergence of
the series of g.

5. Summary and conclusion

Different potential configurations of the AO have been considered to illustrate the efficiency
and the limitations of the mapping method for solving nonlinear ODE [5]. As several
other quasi-analytic methods encountered here and there in the literature of the AO, it is
based on a generic Taylor series in powers of the independent variable. After a short
presentation of those methods, the mapping method has been introduced and its use is
illustrated on the basis of the simplicity of the analytic properties of the AO. In particular, the
practical determination of the two adjustable parameters R and α, inherent to the method (see
equation (32)), corresponds precisely to those analytic properties. Extremely high accurate
estimates of the spectrum of the AO have been easily obtained (see the appendix and [8]). The
efficiency of the method decreases with the radius of convergence R. In the case of very small
R , the analytic continuation method or the Padé method have appeared to be more efficient.

Finally the mapping method [5] is an extremely refined method, easy to use and which
provides clear convergence toward the values looked for provided the radius of convergence
of the initial Taylor series is not too small. The Padé method [6] is also an easy-to-use method
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Table A1. Estimates of even excited-state energies for β = 1, m = 2 as obtained by the mapping
method with M = 115. The last column displays an approximate value of the number of significant
figures obtained in each case.

n En Nc

2 8.655 049 957 759 309 688 116 539 457 377 308 026 275 40
4 18.057 557 436 303 252 894 771 239 646 525 434 8531 39
6 28.835 338 459 504 248 840 133 635 715 499 838 17 37
8 40.690 386 082 106 444 725 278 931 481 582 464 35
10 53.449 102 139 665 264 600 831 506 459 7595 33
12 66.995 030 001 247 166 061 019 704 904 702 32
14 81.243 505 050 767 152 737 066 521 470 34 31
16 96.129 642 045 234 052 046 811 222 396 29
18 111.601 815 045 172 958 533 701 5116 28
20 127.617 777 795 354 918 333 962 292 27
22 144.142 195 296 398 163 731 983 24
24 161.144 990 694 512 951 868 62 23
26 178.600 192 366 875 761 1938 22
28 196.485 102 910 220 443 66 20
30 214.779 683 549 176 627 18
32 233.466 087 479 3752 16
34 252.528 299 061 4935 16

which is more robust but less refined than the mapping method. The two methods (and also
the analytic continuation method [10, 12]) may certainly be advantageously associated in the
process of solving a two-point boundary problem of a nonlinear ODE.
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Appendix

In this appendix, we present the estimates of the energy spectrum of the configuration β = 1,

m = 2 of the AO as obtained using the mapping method.
With M = 150, R = 5.192 694 846 776 623 5669 and α = 2, the ground-state energy has

been determined with 83 significant figures:

E0 = 1.392 351 641 530 291 855 657 507 876 609 934 184 600 066 711 220 834 088 906 349

323 877 567 431 875 646 5286.

The estimates of the 17 first even excited states, obtained with M = 115, are given in
table A1.

With M = 115, R = 6.033 449 839 500 17 and α = 2 the first odd state has been
determined with 70 significant figures:

E1 = 4.648 812 704 212 077 536 377 032 917 260 584 488 898 860 447 882 825 934 823 424

910 341 006.
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Table A2. Estimates of odd excited-state energies for β = 1, m = 2 as obtained by the mapping
method with M = 121. The last column displays an approximate value of the number of significant
figures obtained in each case.

n En Nc

3 13.156 803 898 049 875 079 209 772 040 382 314 674 650 1484 45
5 23.297 441 451 223 189 084 864 481 992 098 123 828 1208 42
7 34.640 848 321 111 332 542 884 527 618 156 342 033 769 41
9 46.965 009 505 675 527 984 096 443 324 175 114 2524 39
11 60.129 522 959 157 771 315 848 016 059 852 822 16 37
13 74.035 874 359 102 530 180 741 205 487 403 699 15 37
15 88.610 348 800 799 158 873 039 105 371 324 88 34
17 103.795 300 322 272 609 678 111 687 955 7136 34
19 119.544 170 733 050 311 130 026 949 345 64 32
21 135.818 417 325 610 373 340 451 430 114 30
23 152.585 504 205 573 921 566 866 1903 28
25 169.817 528 001 595 348 199 877 321 27
27 187.490 242 692 950 322 544 8058 25
29 205.582 346 604 423 518 718 34 23
31 224.074 947 852 600 306 2853 22
33 242.951 154 951 147 123 53 20
35 262.195 757 468 519 8472 19
37 281.794 972 923 819 312 18
39 322.008 069 744 848 15
41 363.501 894 8643 13

The estimates of the 20 first odd excited states, obtained with M = 121, are given in
table A2.

All the estimates obtained are in agreement with the existing literature [14, 17, 38] at least
up to 10–16 significant figures they quote.
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